「智能产业发展现状的主要国家有」智能产业发展现状的主要国家有哪些

体育正文 170 0

智能产业发展现状的主要国家有

智能产业发展现状的主要国家有哪些

我国智能制造的发展现状

现状:智能制造业产值有望达2.5万亿元我国虽然是制造业大国,但是区域技术发展不平衡,信息化水平发展参差不齐,标准化程度低。随着人工成本的攀升、低端制造业转移、科学技术的发展、人工智能的应用,中国制造业逐渐进入大规模机器生产阶段,尤其劳动密集型企业,促进机器人生产代替劳动力。经过多年发展,我国智能制造发展从初期的理念普及、试点示范阶段进入到当前深化应用、全面推广阶段,形成了试点示范引领、供需两端发力的良好局面。智能制造是数字经济的皇冠,将成为各国抢占数字经济制高点的主战场,成为提升国家整体制造业水平的增长引擎。2020年10月,十九届五中全会提出的“到2035年基本实现新型工业化、信息化、城镇化、农业现代化”的目标将进一步加速推进我国智能制造发展。根据《中国制造2025》、十九届五中全会提出的新型工业化等政策,我国智能制造对于国家国际竞争力的提高越来越重要。随着国家对智能制造的大力支持,我国智能制造行业保持着较为快速的增长速度,继2019年我国智能制造装备行业的产值规模突破两万亿元后,2020年初步估计达2.5万亿元。——以上数据来源参考前瞻产业研究院发布的《智能制造行业市场前瞻与投资战略规划分析报告》。
行业主要相关上市公司:浙海德曼(688577)、三丰智能(300276)、埃夫特(688165)、创世纪(300083)、山河智能(002097)、哈工智能(000584)、瀚川智能(688022)、华东数控(002248)、华明装备(002270)、宇环数控(002903)、机器人(300024)等。本文核心数据:中国制造业企业智能制造成熟度前列的行业、中国计算机电子设备制造业企业智能制造成熟度分布、中国汽车制造业企业智能制造成熟度分布、中国电子机械和器材制造业企业智能制造成熟度分布《智能制造能力成熟度模型》的5个等级2021 年5 月,《智能制造能力成熟度模型》(GB/T39116-2020)发布,该标准将智能制造能力定义为:为实现智能制造的目标,企业对人员、技术、资源、制造等进行管理提升和综合应用的程度。并且提出了企业智能制造成熟度的5个等级,分别为一级(规划级)、二级(规范级)、三级(集成级)、四级(优化级)、五级(引领级)。三大行业智能制造成熟度领先根据《智能制造发展指数报告(2021)》统计数据,2021年计算机电子设备制造业、汽车制造业以及电子机械和器材制造业位于各行业智能制造能力成熟度水平前列。计算机电子设备制造业智能制造成熟度水平领先根据《智能制造发展指数报告(2021)》统计数据,2021年中国计算机电子设备制造业智能制造成熟度在一级及以下的企业占比为52.7%,二级企业占比超过20%,三级和四级及以上企业占比均超过12%,位于各行业智能制造能力成熟度水平前列。汽车制造业二级及以上企业占比超46%根据《智能制造发展指数报告(2021)》统计数据,2021年中国汽车制造业智能制造能力水平达到二级及以上的企业数量占比超过46%,其中四级及以上企业占比超10%。中国电子机械和器材制造业二级及以上企业占比超40%根据《智能制造发展指数报告(2021)》统计数据,2021年中国电子机械和器材制造业智能制造能力水平达到二级及以上的企业数量占比超过40%,其中四级及以上企业占比超11%。综上所述,国家标准《智能制造能力成熟度模型》将智能制造能力分为5个等级。2021年,计算机电子设备制造业、汽车制造业以及电子机械和器材制造业位于各行业智能制造能力成熟度水平前列。计算机电子设备制造业二级及以上企业占比超47%,汽车制造业二级及以上企业占比超46%,电子机械和器材制造业二级及以上企业占比超40%。以上数据参考前瞻产业研究院《智能制造行业市场前瞻与投资战略规划分析报告》
我国智能制造的发展现状

人工智能的发展前景如何?

当前,国内外互联网巨头纷纷将人工智能作为下一次产业革命的突破口,积极加大投资布局,与此同时,随着人工智能技术进步和基础设施建设不断完善的推动下,全球人工智能应用场景将不断丰富,市场规模持续扩大。“人工智能”一词最初是在1956年美国计算机协会组织的达特矛斯(Dartmouth)学会上提出的,人工智能发展至今经历过经费枯竭的两个寒冬(1974-1980年、1987-1993年),也经历过两个大发展的春天(1956-1974年、1993-2005年)。从2006年开始,人工智能进入了加速发展的新阶段,并行计算能力、大数据和先进算法,使当前人工智能加速发展;同时,近年来人工智能的研究越来越受到产业界的重视,产业界对AI的投资和收购如火如荼。人工智能技术迈入深度学习阶段机器学习是实现人工智能的一种重要方法,深度学习(Deep Learning)是机器学习(Machine Learning)的关键技术之一。深度学习自2006年由Jeffery Hinton实证以来,在云计算、大数据和芯片等的支持下,已经成功地从实验室中走出来,开始进入到了商业应用,并在机器视觉、自然语言处理、机器翻译、路径规划等领域取得了令人瞩目的成绩,全球人工智能也正式迈入深度学习阶段。与此同时,全球人工智能领域对新技术的探索从未停止,新技术层出不穷,例如近年来一些新的类脑智能算法提出来,将脑科学与思维科学的一些新的成果结合到神经网络算法之中,形成不同于深度学习的神经网络技术路线,如胶囊网络等,技术的不断进步是推动全球人工智能的发展的不竭动力,这些新技术的研究和应用将加快全球人工智能的发展进程。主要经济体加快人工智能战略布局人工智能作为引领未来的战略性技术,目前全球主要经济体都将人工智能作为提升国家竞争力、维护国家安全的重大战略。自2013年以来,包括美国、中国、欧盟、英国、日本、德国、法国、韩国、印度、丹麦、芬兰、新西兰、俄罗斯、加拿大、新加坡、阿联酋、意大利、瑞典、荷兰、越南、西班牙等20多个国家和地区发布了人工智能相关战略、规划或重大计划,越来越多的国家加入到布局人工智能的队列中,从政策、资本、技术人才培养、应用基础设施建设等方面为本国人工智能的落地保驾护航。人工智能领域新基建扩容趋势明显人工智能新基建包含智能芯片、5G、感知网络、数据中心等支持人工智能发展的生产性设施建设,同时人工智能与实体经济深度融合做构建的智能经济形态也是人工智能领域新基建的一部分。近年来,全球人工智能发展的生产性设施建设步伐加快,2020年新冠疫情在全球爆发,对全球的经济生产活动产生较大的冲击,但值得注意的是,全球范围内的新基建业务扩容未被阻断,从各国政府到行业主要企业都积极参与到人工智能新基建的建设中。人工智能芯片是人工智能的大脑,随着全球人工智能终端设备数量的增长以及边缘计算的需求逐步提升,全球人工智能芯片需求量快速增长,市场规模不断扩大。根据Tractica公布的数据显示,2019年全球人工智能芯片市场规模达110亿美元,预计2020年全球人工智能芯片市场规模将增加至175亿美元,2025年全球人工智能芯片市场规模有望突破720亿美元。5G的低延迟、高速度和边缘计算能力可以推动人工智能设备更智能地进行大量的数据连接,提升人工智能设备的学习能力,与此同时将5G网络与人工智能技术相结合,可以有效提高5G网络的智能化程度,使网络从人工配置参数与使用专家的经验编制策略转变为网络智能配置参数与智能策略自动生成成为可能。由此可见,5G与人工智能的互促式发展可以加速全球人工智能应用突破与落地,因此,目前全球范围正在加快5G商用推广的步伐,全球5G基础设施建设如火如荼。根据GSMA(全球移动通信系统协会)公布的数据显示,截至2020年7月底,全球38个国家已经部署了92张5G移动网络,较4月底增加了22张;截至2020年9月,全球5G终端达到18类362款,其中162款手机,113款已经上市,其中70%+支持SA(独立组网),5G商用正在加快。根据爱立信公布的数据显示,截至2020年6月底,全球范围内共部署了约72万个5G基站,2020年8月这一数据增加至80万个,前瞻预计,到2020年底,全球5G基站总数将达到100万个。近年来,随着计算能力越来越强,云计算、大数据、虚拟化等技术的出现,让人工智能有了可依赖的现实技术基础。人工智能的算法需要依赖海量的数据,利用海量的样本进行机器学习。数据中心天然就是一个海量数据库,每天生成的和转发的数据都在呈指数增长,有了这些数据,再利用大数据技术去分析,就能得到很多有意义的数据供人工智能学习;与此同时,人工智能要依赖计算,只有高速的计算能力才能在短时间完成指定的任务,现在的数据中心利用网络进行分布式计算,大大提高了计算能力,人工智能的学习能力可以得到大幅提升。数据中心为人工智能提供更多的技术支撑与创造无限可能。全球数据中心建设加快有力的推动了人工智能的发展,从2017年开始,伴随着大型化、集约化的发展,全球数据中心数量开始缩减,但值得注意的是,随着行业集中度的逐步提升,全球超大型数据中心数量总体增长,据Cisco的统计数据显示,2019年,全球超大型数据中心数量约447个;至2020年,全球超大新数据中心将达到485个。根据Gartner公布的数据显示,2017年底全球部署机架数达到493.3万架,安装服务器超过5500万台,2019年全球数据中心部署的机架数量约为495.4万架。预计2020年机架数将超过498万架,服务器超过6200万台。人工智能商业化加速 应用场景愈发丰富人工智能技术经过过去近10年的快速发展已经取得较大突破,随着人工智能理论和技术的日益成熟,人工智能场景融合能力不断提升,因此,近年来商业化应用已经成为人工智能科技企业布局的重点,欧洲、美国等发达国家和地区的人工智能产业商业落地期较早,中国作为后期之秀,近年来在政策、资本的双重推动下,人工智能商业化应用进程加快。目前,人工智能技术已在金融、医疗、安防、教育、交通、制造、零售等多个领域实现技术落地,且应用场景也愈来愈丰富值得注意的是,尽管目前全球范围内人工智能商业化进程正加速推进,但受制于应用场景的复杂度、技术的成熟度、数据的公开水平等限制,全球人工智能仍处在产业化和市场化的探索阶段,落地场景的丰富度、用户需求和解决方案的市场渗透率仍有待提高。人工智能市场规模快速增长基于人工智能技术的各种产品在各个领域代替人类从事简单重复的体力或脑力劳动,大大提升了生产效率和生活质量,也促进了各个行业的发展和变革。普华永道数据预测,受到下游需求倒逼和上游技术成型推动的双重动因,2020年全球人工智能市场规模将达到2万亿美元,预计未来几年市场将继续保持高速增长,到2030年全球市场规模将达到15.7万亿美元的规模,约合人民币104万亿元。北美地区人工智能产业发展领先近年来,人工智能在北美洲、亚洲、欧洲地区发展愈演愈烈。北美、亚洲和欧洲是全球人工智能发展最为迅速的地区。截止2019年底,北美地区共有2472家人工智能活跃企业,超级独角兽企业78家;亚洲地区活跃人工智能企业1667家,超级独角兽企业8家;欧洲地区活跃人工智能企业1149家,超级独角兽企业8家。注:超级独角兽指的是估值超过100亿美元的企业科技巨头纷纷布局人工智能行业近年来,全球科技巨头纷纷布局人工智能。在美国地区,Google实行“全面开花”的策略,在云服务、无人驾驶、虚拟现实、无人机、仓储机器人等领域均有布局。Facebook依托社交网络,从产品中获得数据、训练数据,再将其人工智能产品反作用于社交网络用户。微软则致力于将人工智能技术应用到智能助手、AR/VR等领域,例如Skype及时翻译、小冰聊天机器人、Cortana虚拟助理等应用。在中国,互联网巨头企业如百度、腾讯和阿里均纷纷依托自身平台优势,构建人工智能服务产品,主要布局于人工智能应用层领域。人工智能新一轮资本热潮方兴未艾从生产方式的智能化改造,到生活水平的智能化提升,再到社会治理的智能化升级,新一代人工智能的应用驱动特征愈加明显,大量新兴应用场景持续培育形成。快速丰富的数据储备,逐渐清晰的业务逻辑,以及即将落地的商业价值,促使全球人工智能新一轮资本热潮方兴未艾。根据CB Insights公布的数据显示,2014-2019年全球人工智能融资金额和融资次数逐年增长,2019年再创新高,融资金额达到265.80亿美元,融资次数超过2000次。—— 以上数据及分析均来自于前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。
1.如果成绩不是差得太多,就做好复读的准备,再好好努力复读一年争取上个好的高中。只有上了好的高中才有机会参加高考上个好的大学。 2.有很多家长会选择让孩子上职高,或者是中专,认为可以对口升学上大专。但是这条路是需要慎重选择的。很多职高和中专受到国家制度的弊病,教学质量实训设备都是很滞后的,需要靠自己 3.现在的社会学历和技能一样重要,所以国家大力鼓励职业教育的发展,考不上高中选择一个好的技校
目前,人工智能是一个快速发展的领域,对人才的需求很大。和其他技术岗位相比,竞争低,工资相对高。所以现在是进入人工智能领域的好时机。研究还表明,三项技能以上的人才对企业更有吸引力,而且趋势越来越明显。所以IT技术人员需要在掌握一门技术的同时掌握更多的技能!人工智能人才目前处于明显短缺状态,这种状况还存在扩大的趋势。当前社会技术环境下,需要兼顾扎实的专业技术和复合型背景的人才。在互联网企业中,人工智能的薪酬排在第三位,其中薪酬最高的是声音识别方向的从业者。
1.如果成绩不是差得太多,就做好复读的准备,再好好努力复读一年争取上个好的高中。只有上了好的高中才有机会参加高考上个好的大学。 2.有很多家长会选择让孩子上职高,或者是中专,认为可以对口升学上大专。但是这条路是需要慎重选择的。很多职高和中专受到国家制度的弊病,教学质量实训设备都是很滞后的,需要靠自己 3.现在的社会学历和技能一样重要,所以国家大力鼓励职业教育的发展,考不上高中选择一个好的技校
人工智能发展的前景如何?虽然我对这个人工智能不太了解,但是我看现在很多人都说人工智能是非常好的发展前景,而且我刷抖音也在抖音上看到别人说未来十年男生最好的工作之一就有人工智能。所以说应该发展前景很好吧。你可以参考一下。
人工智能的发展前景如何?

我国人工智能的发展现状

人工智能产业链分为基础层、技术层和应用层。基础层是人工智能产业链的基础,为人工智能提供算力支撑和数据输入,中国在此领域发展时间较短,基础层发展较为薄弱。目前,中国的人工智能企业主要集中在北京、广东、上海和浙江,北京的人工智能发展已经步入快车道。人工智能产业链全景梳理:基础层发展薄弱基础层主要提供算力和数据支持,主要涉及数据的来源与采集,包括AI芯片、传感器、大数据、云计算、开源框架以及数据处理服务等。技术层处理数据的挖掘、学习与智能处理,是连接基础层与具体应用层的桥梁,主要包括机器学习、深度学习、计算机视觉、自然语言处理、语音识别等。应用层针对不同的场景,将人工智能技术进行应用,进行商业化落地,主要应用领域有驾驶、安防、医疗、金融、教育等。近年来,人工智能在技术与应用方面取得了巨大的进展,在国际上具备了一定的竞争力,但是基础层的薄弱仍然是限制中国人工智能发展的关键因素。中国在在基础层发展时间较短,较落后于国际先进水平。 长期以来,中国的芯片大部份依赖进口,计算力方面的基础薄弱,且开源框架受制于国外AI巨头。基础层的人工智能算力发挥着越来越重要的作用, AI芯片作为人工智能产业发展的核心,将迎来巨大的发展机遇。目前,中国人工智能芯片优秀企业有寒武纪、华为海思、中星微、西井科技、地平线、富瀚微、四维图新、瑞芯微、深鉴科技等。人工智能产业链区域热力图:北京AI发展步入快车道根据公开资料整理人工智能优秀企业区域分布热力地图如下,可见,我国人工智能产业链重点企业集中于北京、广东、上海、浙江等地区。北京作为中国集聚人工智能企业最多的区域,其人工智能产业的链条已经比较完善,覆盖了整个产业链环节,且在产业链的重点细分领域均出现了行业龙头企业。其中,基础层中传感器的行业龙头京东方科技,AI芯片的行业龙头中星微电子、寒武纪、地平线、四维图新等,云计算的百度云、金山云、世纪互联等,数据服务的百度数据众包、京东众智、数据堂等;技术层的机器学习龙头百度IDL、京东DNN等,计算机视觉的商汤科技、旷视科技等,自然语言处理的百度、搜狗、紫平方等,语音识别的出门问问、智齿科技等;应用层的人工智能重点企业也涉及了各个领域。北京正在逐步形成具有全球影响力的人工智能产业生态体系。—— 更多数据及分析请参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。
我国人工智能的发展现状

智能家居在发达国家的发展现状怎样?

可以毫不保留的说,接下来的10年内,智能家居必然是一个火热的行业,多的不说,从简单的电动窗帘,电动遮阳就足矣看出了,也许您今天会认为电动窗帘是多余的,还在用手拉的窗帘,但是不可以否认的是,10年后,几乎每家每户都会用电动窗帘了,就好比,现在煤油灯被淘汰了是一个道理,您不变,社会在变,科技在发展,10年后的你比如逃不出智能科技带来的便捷,就好比现在手拉电闸已经不生产了,是一个道理。
很普及的,智能家居看似是奢侈品,对于普通家庭来说,可要可不要,导致这种观念的无非就是一个价格问题制约了大部分的家庭对智能家居的使用。过去很多人会认为智能家居无非就是有“钱”人用的,高端,大气,上档次,整体智能家居安装下来价格过于奢侈,从简单的灯光控制,电动窗帘控制,空调的控制以及电视的控制,全屋的智能家居控制涉及面比较广,到复杂的监控,安防,门锁,窗户,家庭影院等,安装工程大,周期时间长,导致费用高,再加之都是新型科技产品,前期大量的研发,对接,到用户家里使用,过程太长。
我感觉智能家居发达国家应该也没这么普及,以我们的智能马桶为例,光是买一个全新的智能马桶,估计得要3000多,而这个还是一般的,功能相对一些高端的肯定会少很多。如果是就换一个智能马桶盖,那花费也是不小,2000上下。再看看我们一般的抽水马桶,基本几百块钱便可以买到。相比智能马桶,差的是几倍的价格。如果说价格已不是问题,那使用习惯和适应会是最大的障碍。一个长期使用抽水马桶的人,突然改用智能马桶,而且全程不用自己动手,按几个按键就可以完成。年轻人可能会好点,那老年人,他们会那么快接受吗。
智能家居良好的发展前景已吸引众多巨头公司涉足,成为群雄逐鹿的战场,国内外科技企业都已经对智能家居市场蠢蠢欲试,以单品爆发与平台发力等作为落脚点争相布局,欲抢占智能家居产业的主导地位。随着各大巨头纷纷入局,智能家居市场迎来了启动期,为其进入高速发展的阶段进行了铺垫。
发达国家的智能家居是以住宅为平台,利用网络通信、自动控制、音视频等技术将与家居生活相关的设施联系在一起,构建高效的住宅设施与家庭事务的管理系统,提升家居生活的便捷性、舒适性。早期的智能家居只是在普通家居上安装各种传感器和电动部件,让原本需要亲力亲为的人力动作交给机器,而我们只需在手机上按个按钮即可。但这只不过是“自动化家庭”,直到人工智能技术与智能语音技术与智能家居融合,智能家居时代才算拉开序幕。
智能家居在发达国家的发展现状怎样?

人工智能的研究现状和未来热点

人工智能行业主要上市公司:目前国内人工智能行业的上市公司主要有百度百度(BAIDU)、腾讯(TCTZF)、阿里巴巴(BABA)、科大讯飞(002230)等。本文核心数据:人工智能技术层重点分类,计算机视觉发展历程,计算机视觉市场规模,语音识别发展历程,语音识别市场规模1、 机器视觉和语音识别是主要市场技术层是基于基础理论和数据之上,面向细分应用开发的技术。中游技术类企业具有技术生态圈、资金和人才三重壁垒,是人工智能产业的核心。相比较绝大多数上游和下游企业聚焦某一细分领域、技术层向产业链上下游扩展较为容易。该层面包括算法理论(机器学习)、平台框架和应用技术(计算机视觉、语音识别、自然语言处理)。众多国际科技巨头和独角兽均在该层级开展广泛布局。近年来,我国技术层围统垂直领城重点研发,在计算机视觉、语音识别等领城技术成熟,国内头部企业脱颖而出,竞争优势明显。2、计算机视觉发展历经三大理念,规模突破400亿元1982年马尔(David Marr)《视觉》(Marr,1982)一书的问世,标志着计算机视觉成为了一门独立学科。计算机视觉的研究内容,大体可以分为物体视觉(object vision)和空间视觉(spatial vision)二大部分。物体视觉在于对物体进行精细分类和鉴别,而空间视觉在于确定物体的位置和形状,为“动作(action)”服务。正像著名的认知心理学家JJ.Gibson所言,视觉的主要功能在于“适应外界环境,控制自身运动”。适应外界环境和控制自身运动,是生物生存的需求,这些功能的实现需要靠物体视觉和空间视觉协调完成。计算机视觉近40年的发展中,尽管人们提出了大量的理论和方法,但总体上说,计算机视觉经历了三个主要历程。即:马尔计算视觉、多视几何与分层三维重建和基于学习的视觉。国际市场研究机构Research And Markets发布的最新报告显示,2019年全球计算机视觉市场规模为46.433亿美元,预计到2027年将达到950.805亿美元,从2020年到2027年,预计年复合增长率为46.9%。3、语音识别发展科追溯到1956年语音识别的研究工作可以追溯到20世纪50年代。在1952年,AT&T贝尔研究所的Davis,Biddulph和Balashek研究成功了世界上第一个语音识别系统Audry系统,可以识别10个英文数字发音。这个系统识别的是一个人说出的孤立数字,并且很大程度上依赖于每个数字中的元音的共振峰的测量。1956年,在RCA实验室,Olson和Belar研制了可以识别一个说话人的10个单音节的系统,它同样依赖于元音带的谱的测量。到21世纪之后,深度学习技术极大的促进了语音识别技术的进步,识别精度大大提高,应用得到广泛发展。目前,语音识别技术已逐渐被应用于工业、通信、商务、家电、医疗、汽车电子以及家庭服务等各个领域。例如,现今流行的手机语音助手,就是将语音识别技术应用到智能手机中,能够实现人与手机的智能对话功能。其中包括美国苹果公司的Siri语音助手,智能360语音助手,百度语音助手等。随着语音技术和自然语言理解技术的快速进步,AI语音语义技术已在智能翻译、智能医疗、智能汽车、智能客服、互联网语音审核等多个领域实现场景应用。疫情之后不仅是工业领域,政务服务领域的语音机器人、传统行业企业的语音机器人也将有较高的市场增长空间。另外,NLP、AI数字员工、RPA的发展,一定程度上也将重塑AI应用场景。2018年,全球智能语音市场仍呈现快速增长趋势,市场规模为142.1亿美元,根据预测到2024年全球智能语音市场规模将达到215亿美元,其中智慧医疗健康、智慧金融以及各类智能终端智能语音技术需求将成为主要的驱动因素。4、美国AI高层次学者数量大幅领先AI高层次学者是指入选AI 2000榜单的2000位人才,由于存在同一学者入选不同领域的现象,经过去重处理后,AI高层次学者共计1833位。从国家角度看AI高层次学者分布,美国A1高层次学者的数量最多,有1244人次,占比62.2%,超过总人数的一半以上,且是第二位国家数量的6倍以上。中国排在美国之后,位列第二,有196人次,占比9.8%。德国位列第三,是欧洲学者数量最多的国家;其余国家的学者数量均在100人次以下。以上数据参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。
从城市群来看,目前,我国人工智能企业主要分布在京津冀、长三角、珠三角、川渝四大都市圈。京津冀区域竞争力最强,长三角位列第二,珠三角位列第三。从省市自治区来看,北京、广东、上海、浙江、江苏人工智能企业数量排名前五;从城市来看,北上广深AI企业数量最多,产业链发展相对完善。人工智能行业主要上市公司:阿里巴巴(BABA)、腾讯(00700.HK)、科大讯飞(002230)、赛为智能(300044)、科大智能(300222)、海康威视(002415)、四维图新(002405)等本文核心数据:人工智能企业在全国都市圈的分布、主要省市/城市人工智能企业数量占比京津冀、长三角和珠三角城市群AI企业集聚,引领产业发展根据中国新一代人工智能发展战略研究院发布的最新《中国新一代人工智能科技产业发展报告2021》数据显示,截至2020年,我国人工智能企业主要分布在京津冀、长江三角洲和珠江三角洲三大都市圈,占比分别为31.02%,30.23%和26.39%。依托科技创新和互联网产业发展优势,京津冀、长江三角洲和珠江三角洲地区在人工智能科技产业的发展中走在了全国的前列。由此可见,中国人工智能区域发展与国家区域战略高度协同相互促进,区域要素汇聚加速人工智能产业引领。京津冀、长三角和粤港澳大湾区已成为我国人工智能发展的三大区域性引擎,成渝城市群、长江中游城市群也展现出人工智能发展的区域活力,产业集聚区初显区域引领和协同作用。北上广深AI企业数量较多具体来看,在各省市自治区中,人工智能企业主要分布在北京市、广东省、上海市、浙江省、江苏省、四川省、山东省、湖北省、福建省和湖南省。其中,北京市占比最高,为29.73%;其次是广东省,占比为26.39%,主要分布在深圳市和广州市;排名第三的是上海市,占比为14.07%;排名第四的是浙江省,占比为8.81%,主要集中在杭州市。从主要城市来看,人工智能企业分布密集的城市是北京市、上海市、深圳市和广州市,占比分别为29.73%,14.07%,13.99%和8.14%,是中国人工智能科技产业发展的前沿城市。西部地区的成都市和中部地区的武汉市同样是人工智能企业数量排名靠前的城市。北上广地区人工智能产业链发展相对完善,细分领域龙头企业较多从产业链来看,北京作为中国集聚人工智能企业最多的区域,其人工智能产业的链条已经比较完善,覆盖了整个产业链环节,且在产业链的重点细分领域均出现了行业龙头企业。其中,基础层中传感器的行业龙头京东方科技,AI芯片的行业龙头中星微电子、寒武纪、地平线、四维图新等,云计算的百度云、金山云、世纪互联等,数据服务的百度数据众包、京东众智、数据堂等;技术层的机器学习龙头百度IDL、京东DNN等,计算机视觉的商汤科技、旷视科技等,自然语言处理的百度、搜狗、紫平方等,语音识别的出门问问、智齿科技等;应用层的人工智能重点企业也涉及了各个领域。北京正在逐步形成具有全球影响力的人工智能产业生态体系。此外,上海和广东地区人工智能产业链代表企业分布也较为广泛。—— 更多数据来请参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》
在大数据时代,人工智能相关技术得到了越来越多的关注,市场对于人工智能产品的呼声也越来越高, 不少科技公司都陆续开始在人工智能领域实施战略布局,由于人工智能人才相对比较短缺,所以人才的争夺也比较激烈。另外,由于相关人才的数量比较少(研究生培养为主),而且培养周期比较长,所以人工智能人才在未来较长一段时间内依然会有一定的缺口。未来人工智能的就业和发展前景都是非常值得期待的,原因有以下几点:一是智能化是未来的重要趋势之一。1、随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这个大背景下,智能化必然是发展趋势之一。2、人工智能相关技术将首先在互联网行业开始应用,然后陆续普及到其他行业。所以,从大的发展前景来看,人工智能相关领域的发展前景还是非常广阔的。二是产业互联网的发展必然会带动人工智能的发展。1、互联网当前正在从消费互联网向产业互联网发展,产业互联网将综合应用物联网、大数据和人工智能等相关技术来赋能广大传统行业。2、人工智能作为重要的技术之一,必然会在产业互联网发展的过程中释放出大量的就业岗位。三是人工智能技术将成为职场人的必备技能之一。1、随着智能体逐渐走进生产环境,未来职场人在工作过程中将会频繁的与大量的智能体进行交流和合作,这对于职场人提出了新的要求。2、未来需要掌握人工智能的相关技术。从这个角度来看,未来掌握人工智能技术将成为一个必然的趋势,相关技能的教育市场也会迎来巨大的发展机会。四是人工智能取代人力,对全球的经济产生影响1、说到人工智能,大多数人都是比较期待的,当然也有少数人会怀着担忧的心态看到它,因为人工智能的发展,让我们看到了人工智能的高效和服从。2、在未来,当人工智能的发展进入到一个全新的领域阶段,它是不是就能够取代现在一些行业所需要的人工劳动呢?如果是的话,那么将会有大面积的失业问题出现。 3、人工智能的发展,能够在短时间内对其进行量产,这样就会有很多人下岗,对全球的经济和社会来说,影响都是巨大的。
北京大学人工智能原理:1.4-人工智能的发展现状
工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。 人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。优点:1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。3、人工智能可以提高人类认识世界、适应世界的能力。缺点:1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。2、人工智能如果不能合理利用,可能被坏人利用在犯罪上,那么人类将会陷入恐慌。 3、如果我们无法很好控制和利用人工智能,我们反而会被人工智能所控制与利用,那么人类将走向灭亡,世界也将变得慌乱。
人工智能的研究现状和未来热点

欢迎 发表评论:

评论列表

暂时没有评论

暂无评论,快抢沙发吧~